Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Richeng Xuan, ${ }^{\mathbf{a} *}$ Yuehua Wan, ${ }^{\text {b }}$
Weixiao Hu, ${ }^{\text {a }}$ Zhongyu Yang, ${ }^{\text {a }}$
Dongping Cheng ${ }^{\mathbf{a}}$ and Rirong
Xuan ${ }^{\text {c }}$
${ }^{\text {a College of Pharmaceutical Sciences, Zhejiang }}$
University of Technology, Hangzhou 310023,
People's Republic of China, 'bibrary, Zhejiang
University of Technology, Hangzhou 310023,
People's Republic of China, and 'Zhejiang
Research Institute of Metallurgy, Hangzhou
310023, People's Republic of China
Correspondence e-mail: xuanrch@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.137$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-5-methylpyridinium 3-(4-hydroxy-3-methoxyphenyl)-2-propenoate monohydrate

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the N atom in the pyridine ring is protonated in preference to the amino N atom. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions generate a three-dimensional molecular network.

Comment

3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid is an active component in Chinese medicinal plants, and it can be used to prevent liver toxicity, to inhibit inflammation and as an antiallergic agent. In fact, it also exists in many other plants. In order to isolate it from plant components, we attempted to find a molecular recognition agent. 2-Amino-5-methylpyridine can form good crystals with 3-(4-hydroxyl-3-methoxyphenyl)-2-propenoic acid in an aqueous solution, giving the title compound, (I). In order to understand how the compounds crystallize and what the structural features are, the crystal structure analysis of (I) has been performed and the results are presented here.

(I)

In the asymmetric unit of (I), there is one 2-amino-5-methyl pyridinium cation, one 3-(4-hydroxyl-3-methoxyphenyl)-2propenoate anion and one water molecule (Fig. 1, Table 1). The amino atom N 2 has predominantly $s p^{2}$ character, as is shown by the $\mathrm{C} 11-\mathrm{N} 2$ bond length of 1.333 (3) \AA, which is shorter than the mean value $(1.360 \AA)$ reported for planar amino groups bonded to aromatic systems (Allen et al., 1987). Atom N 1 in the pyridine ring is protonated, and delocalization involving the amino group is indicated by very similar bond

Figure 1
The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 2 October 2003
Accepted 6 October 2003 Online 15 October 2003

Figure 2
A packing diagram for (I), showing the hydrogen-bonding interactions (dotted lines) in a two-dimensional molecular network.

Figure 3
A packing diagram for (I), viewed along the b axis, showing the hydrogen-bonding interactions (dotted lines) between adjacent twodimensional molecular networks.
lengths for $\mathrm{N} 1-\mathrm{C} 11$ and $\mathrm{N} 2-\mathrm{C} 11$. All non-H atoms in the anion are almost coplanar, as seen from the torsion angles (Table 1).

In the crystal structure of (I), $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) generate two-dimensional molecular networks (Fig. 2). The O5-H5B‥O2 ${ }^{i}$, $\mathrm{C} 16-$ $\mathrm{H} 16 B \cdots \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{C} 10-\mathrm{H} 10 C \cdots \mathrm{O} 4^{\mathrm{V}}$ interactions connect adjacent molecular networks (Fig. 3) [symmetry codes: (i) x, $\left.\frac{3}{2}-y, z-\frac{1}{2} ;(\mathrm{v})-x, 1-y, 1-z\right]$.

Experimental

3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid ($0.20 \mathrm{~g}, 1.03 \mathrm{mmol}$) and 2 -amino- 5 -methyl pyridine $(0.11 \mathrm{~g}, 1.02 \mathrm{mmol})$ were added to and dissolved in water (10 ml), and heated to boiling. The solution was filtered while it was still warm. The filtrate was then cooled to room temperature and allowed to evaporate slowly. Yellow crystals of (I) suitable for X-ray diffraction analysis were obtained in 3 d .

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=320.34$
Monoclinic, $P 2_{1} / c$
$a=8.2127$ (4) \AA
$b=17.9985(10) \AA$
$c=10.8564(5) \AA$
$\beta=94.603(3)^{\circ}$
$V=1599.58(14) \AA^{3}$
$Z=4$

Data collection

Rigaku RAXIS-RAPID
diffractometer

ω scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.908, T_{\text {max }}=0.986$
7122 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.137$
$S=0.93$
3666 reflections
289 parameters
All H -atom parameters refined
$D_{x}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8466 reflections
$\theta=2.2-27.4^{\circ}$
$\mu=0.1 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.30 \times 0.15 \times 0.14 \mathrm{~mm}$

3666 independent reflections
2100 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-23 \rightarrow 23$
$l=-14 \rightarrow 14$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0768 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0077 (16)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O4-C4	$1.360(2)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.342(2)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.366(2)$	$\mathrm{N} 1-\mathrm{C} 15$	$1.358(3)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.416(3)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.494(3)$
O2-C9	$1.259(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.296(3)$
O1-C 9	$1.230(3)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.477(3)$
N2-C11	$1.333(3)$		
O2-C9-C8-C7	$-6.6(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$173.0(2)$
O1-C9-C8-C7	$172.9(2)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$179.9(2)$
C10-O3-C5-C6	$2.3(3)$		

Table 2
Hydrogen-bonding and short-contact geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A \cdots O1	0.84 (3)	1.82 (3)	2.655 (2)	178 (3)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{2}{ }^{\text {i }}$	0.94 (4)	1.79 (4)	2.729 (3)	171 (3)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 5^{\text {ii }}$	0.94 (3)	1.67 (3)	2.604 (2)	174 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$	0.91 (3)	2.27 (3)	3.013 (3)	139 (2)
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 4^{\text {iii }}$	0.89 (3)	2.17 (3)	3.023 (3)	162 (2)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 3^{\text {iii }}$	0.89 (3)	2.39 (3)	3.021 (2)	129 (2)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	1.06 (3)	1.66 (3)	2.687 (2)	162 (2)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	1.06 (3)	2.91 (3)	3.792 (2)	140.4 (18)
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.95 (4)	2.89 (4)	3.654 (4)	138 (3)
C15-H15 . O 5	0.95 (2)	2.40 (2)	3.180 (3)	139.7 (16)
C13-H13..O) ${ }^{\text {iv }}$	0.93 (2)	2.55 (2)	3.278 (3)	136.0 (18)
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 5^{\text {iv }}$	0.93 (2)	2.80 (2)	3.675 (3)	157.4 (19)
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$	0.98 (3)	2.64 (3)	3.348 (4)	130 (2)
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4^{\text {iii }}$	0.93 (2)	2.59 (2)	3.349 (3)	139.6 (19)
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$	1.05 (2)	2.47 (2)	2.868 (2)	101.6 (15)

All H atoms were located in difference Fourier maps and refined isotropically, with refined distances of $\mathrm{C}-\mathrm{H}=0.90$ (3)-1.05 (3) A., $\mathrm{N}-\mathrm{H}=0.89(3)-1.06$ (3) \AA and $\mathrm{O}-\mathrm{H}=0.84$ (3)-0.94 (3) \AA.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation \& Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Molecular Structure Corporation \& Rigaku (2002). CrystalStructure. Version 3.00. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

